Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel

Abstract

Multicolor luminescent materials are of immense importance nowadays, while it still constitutes a challenge to achieve luminescence color tunability, transparency, and flexibility at the same time. Here we show how ultrasmall carbon dots (CDs) fluorescing strongly across the visible spectrum can be surface functionalized and incorporated into highly flexible hybrid materials by combination with ionic liquids within silica gel networks to form CD-ionogels with properties promising for fabrication of flexible displays and other optical technologies without the use of any toxic materials. We demonstrate how the emission from such hybrid materials can be tuned across a large range of the Commission Internationale de l’Enclairage (CIE) display gamut giving full-color performance. We highlight how the rich ladder of emissive states attributable to organic functional groups and CD surface functionalization supports a smooth sequential multiple self-absorption tuning mechanism to red shift continuously from blue emitting n-π* transitions down through the lower energy states

    Similar works

    Full text

    thumbnail-image

    Available Versions