Experimental and Computational Mutagenesis To Investigate
the Positioning of a General Base within an Enzyme Active Site
- Publication date
- Publisher
Abstract
The
positioning of catalytic groups within proteins plays an important
role in enzyme catalysis, and here we investigate the positioning
of the general base in the enzyme ketosteroid isomerase (KSI). The
oxygen atoms of Asp38, the general base in KSI, were previously shown
to be involved in anion–aromatic interactions with two neighboring
Phe residues. Here we ask whether those interactions are sufficient,
within the overall protein architecture, to position Asp38 for catalysis
or whether the side chains that pack against Asp38 and/or the residues
of the structured loop that is capped by Asp38 are necessary to achieve
optimal positioning for catalysis. To test positioning, we mutated
each of the aforementioned residues, alone and in combinations, in
a background with the native Asp general base and in a D38E mutant
background, as Glu at position 38 was previously shown to be mispositioned
for general base catalysis. These double-mutant cycles reveal positioning
effects as large as 10<sup>3</sup>-fold, indicating that structural
features in addition to the overall protein architecture and the Phe
residues neighboring the carboxylate oxygen atoms play roles in positioning.
X-ray crystallography and molecular dynamics simulations suggest that
the functional effects arise from both restricting dynamic fluctuations
and disfavoring potential mispositioned states. Whereas it may have
been anticipated that multiple interactions would be necessary for
optimal general base positioning, the energetic contributions from
positioning and the nonadditive nature of these interactions are not
revealed by structural inspection and require functional dissection.
Recognizing the extent, type, and energetic interconnectivity of interactions
that contribute to positioning catalytic groups has implications for
enzyme evolution and may help reveal the nature and extent of interactions
required to design enzymes that rival those found in biology