Multiple Enzymatic Digestions and Ion Mobility Separation
Improve Quantification of Bacterial Ribosomal Proteins by Data Independent Acquisition Liquid Chromatography−Mass
Spectrometry
- Publication date
- Publisher
Abstract
Mass spectrometry-based quantification
of ribosomal proteins (r-proteins)
associated with mature ribosomes and ribosome assembly complexes is
typically accomplished by relative quantification strategies. These
strategies provide information on the relative stoichiometry of proteins
within the complex compared to a wild-type strain. Here we have evaluated
the applicability of a label-free approach, enhanced liquid chromatography–mass
spectrometry (LC–MS<sup>E</sup>), for absolute “ribosome-centric”
quantification of r-proteins in Escherichia coli mature ribosomes. Because the information obtained in this experiment
is related to the number of peptides identified per protein, experimental
conditions that allow accurate and reproducible quantification of
r-proteins were found. Using an additional dimension of gas-phase
separation through ion mobility and the use of multiple endoproteinase
digestion significantly improved quantification of proteins associated
with mature ribosomes. The actively translating ribosomes (polysomes)
contain amounts of proteins consistent with their known stoichiometry
within the complex. These measurements exhibited technical and biological
reproducibilities at %CV less than 15% and 35%, respectively. The
improved LC–MS<sup>E</sup> approach described here can be used
to characterize in vivo ribosome assembly complexes captured during
ribosome biogenesis and assembly under different perturbations (e.g.,
antibiotics, deletion mutants of assembly factors, oxidative stress,
nutrient deprivation). Quantitative analysis of these captured complexes
will provide information relating to the interplay and dynamics of
how these perturbations interfere with the assembly process