Hole-Conductor-Free Mesoscopic TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes

Abstract

A hole-conductor-free fully printable mesoscopic TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> heterojunction solar cell was developed with TiO<sub>2</sub> nanosheets containing high levels of exposed (001) facets. The solar cell embodiment employed a double layer of mesoporous TiO<sub>2</sub> and ZrO<sub>2</sub> as a scaffold infiltrated by perovskite as a light harvester. No hole conductor or Au reflector was employed. Instead, the back contact was simply a printable carbon layer. The perovskite was infiltrated from solution through the porous carbon layer. The high reactivity of (001) facets in TiO<sub>2</sub> nanosheets improved the interfacial properties between the perovskite and the electron collector. As a result, photoelectric conversion efficiency of up to 10.64% was obtained with the hole-conductor-free fully printable mesoscopic TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> heterojunction solar cell. The advantages of fully printable technology and the use of low-cost carbon-materials-based counter electrode and hole-conductor-free structure provide this design a promising prospect to approach low-cost photovoltaic devices

    Similar works

    Full text

    thumbnail-image

    Available Versions