Identification of Neuropeptide S Antagonists: Structure–Activity Relationship Studies, X‑ray Crystallography, and in Vivo Evaluation

Abstract

Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1<i>H</i>-oxazolo­[3,4-α]­pyrazin-3­(5<i>H</i>)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The <i>R</i> isomer was then converted to a biologically active compound (<b>34</b>) that had a <i>K</i><sub>e</sub> of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system

    Similar works

    Full text

    thumbnail-image

    Available Versions