Analytical Comparison of Natural and Pharmaceutical
Ventricular Myosin Activators
- Publication date
- Publisher
Abstract
Ventricular myosin (βMys) is
the motor protein in cardiac
muscle generating force using ATP hydrolysis free energy to translate
actin. In the cardiac muscle sarcomere, myosin and actin filaments
interact cyclically and undergo rapid relative translation facilitated
by the low duty cycle motor. It contrasts with high duty cycle processive
myosins for which persistent actin association is the priority. The
only pharmaceutical βMys activator, omecamtive mecarbil (OM),
upregulates cardiac contractility <i>in vivo</i> and is
undergoing testing for heart failure therapy. <i>In vitro</i> βMys step-size, motility velocity, and actin-activated myosin
ATPase were measured to determine duty cycle in the absence and presence
of OM. A new parameter, the relative step-frequency, was introduced
and measured to characterize βMys motility due to the involvement
of its three unitary step-sizes. Step-size and relative step-frequency
were measured using the Qdot assay. OM decreases motility velocity
10-fold without affecting step-size, indicating a large increase in
duty cycle converting βMys to a near processive myosin. The
OM conversion dramatically increases force and modestly increases
power over the native βMys. Contrasting motility modification
due to OM with that from the natural myosin activator, specific βMys
phosphorylation, provides insight into their respective activation
mechanisms and indicates the boilerplate screening characteristics
desired for pharmaceutical βMys activators. New analytics introduced
here for the fast and efficient Qdot motility assay create a promising
method for high-throughput screening of motor proteins and their modulators