Phosphoproteome Profiling
of the Macrophage Response
to Different Toll-Like Receptor Ligands Identifies Differences in
Global Phosphorylation Dynamics
- Publication date
- Publisher
Abstract
Toll-like
receptors (TLRs) are among the first sensors that detect
infection and drive immune response. Macrophages encountering a pathogen
are usually stimulated not by one TLR, but by a combination of TLRs
engaged by distinct microbe ligands. To understand the integrated
signaling under complex conditions, we investigated the differences
in the phosphoprotein signaling cascades triggered by TLR2, TLR4,
and TLR7 ligands using a single responding cell population. We performed
a global, quantitative, early poststimulation kinetic analysis of
the mouse macrophage phosphoproteome using stable isotope labeling
with amino acids coupled to phosphopeptide enrichment and high-resolution
mass spectrometry. For each TLR ligand, we found marked elevation
of phosphorylation of cytoskeleton components, GTPases of the Rho
family, and phospholipase C signaling pathway proteins. Phosphorylation
of proteins involved in phagocytosis was only seen in response to
TLR2 and TLR4 but not to TLR7 activation. Changes in the phosphorylation
of proteins involved in endocytosis were delayed in response to TLR2
as compared to TLR4 ligands. These findings reveal that the phosphoproteomic
response to stimulation of distinct TLRs varies both in the major
modification targets and the phosphorylation dynamics. These results
advance the understanding of how macrophages sense and respond to
a diverse set of TLR stimuli