Near-Field Light Design with Colloidal Quantum Dots for Photonics and Plasmonics

Abstract

Colloidal quantum-dots are bright, tunable emitters that are ideal for studying near-field quantum-optical interactions. However, their colloidal nature has hindered their facile and precise placement at desired near-field positions, particularly on the structured substrates prevalent in plasmonics. Here, we use high-resolution electro-hydrodynamic printing (<100 nm feature size) to deposit countable numbers of quantum dots on both flat and structured substrates with a few nanometer precision. We also demonstrate that the autofocusing capability of the printing method enables placement of quantum dots preferentially at plasmonic hot spots. We exploit this control and design diffraction-limited photonic and plasmonic sources with arbitrary wavelength, shape, and intensity. We show that simple far-field illumination can excite these near-field sources and generate fundamental plasmonic wave-patterns (plane and spherical waves). The ability to tailor subdiffraction sources of plasmons with quantum dots provides a complementary technique to traditional scattering approaches, offering new capabilities for nanophotonics

    Similar works

    Full text

    thumbnail-image

    Available Versions