In protein–ligand binding,
the electrostatic environments
of the two binding partners may vary significantly in bound and unbound
states, which may lead to protonation changes upon binding. In cases
where ligand binding results in a net uptake or release of protons,
the free energy of binding is pH-dependent. Nevertheless, conventional
free energy calculations and molecular docking protocols typically
do not rigorously account for changes in protonation that may occur
upon ligand binding. To address these shortcomings, we present a simple
methodology based on Wyman’s binding polynomial formalism to
account for the pH dependence of binding free energies and demonstrate
its use on cucurbit[7]uril (CB[7]) host–guest systems. Using
constant pH molecular dynamics and a reference binding free energy
that is taken either from experiment or from thermodynamic integration
computations, the pH-dependent binding free energy is determined.
This computational protocol accurately captures the large p<i>K</i><sub>a</sub> shifts observed experimentally upon CB[7]:guest
association and reproduces experimental binding free energies at different
levels of pH. We show that incorrect assignment of fixed protonation
states in free energy computations can give errors of >2 kcal/mol
in these host–guest systems. Use of the methods presented here
avoids such errors, thus suggesting their utility in computing proton-linked
binding free energies for protein–ligand complexes