Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study

Abstract

Direct observations on nanopillars composed of molybdenum disulfide (MoS<sub>2</sub>) and chromium-doped MoS<sub>2</sub> and their response to compressive stress have been made. Time-resolved transmission electron microscopy (TEM) during compression of the submicrometer diameter pillars of MoS<sub>2</sub>- and Cr-doped MoS<sub>2</sub> (Cr: 0, 10, and 50 at %) allow the deformation process of the material to be observed and can be directly correlated with mechanical response to applied load. The addition of chromium to the MoS<sub>2</sub> changed the failure mode from plastic deformation to catastrophic brittle fracture, an effect that was more pronounced as chromium content increased

    Similar works