Passivation of PbS Quantum Dot Surface with l‑Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells

Abstract

Surface oxidation of quantum dots (QDs) is one of the biggest challenges in quantum dot-sensitized solar cells (QDSCs), because it introduces surface states that enhance electron–hole recombination and degrade device performance. Protection of QDs from surface oxidation by passivating the surface with organic or inorganic layers can be one way to overcome this issue. In this study, solid-state QDSCs with a PbS QD absorber layer were prepared from thin mesoporous TiO<sub>2</sub> layers by the successive ionic layer adsorption/reaction (SILAR) method. Spiro-OMeTAD was used as the organic p-type hole transporting material (HTM). The effects on the solar cell performance of passivating the surface of the PbS QDs with the tripeptide l-glutathione (GSH) were investigated. Current–voltage characteristics and external quantum efficiency measurements of the solar cell devices showed that GSH-treatment of the QD-sensitized TiO<sub>2</sub> electrodes more than doubled the short circuit current and conversion efficiency. Impedance spectroscopy, intensity-modulated photovoltage and photocurrent spectroscopy analysis of the devices revealed that the enhancement in solar cell performance of the GSH-treated cells originates from improved charge injection from PbS QDs into the conduction band of TiO<sub>2</sub>. Time-resolved photoluminescence decay measurements show that passivation of the surface of QDs with GSH ligands increases the exciton lifetime in the QDs

    Similar works

    Full text

    thumbnail-image

    Available Versions