Modular Synthesis of Aromatic Hydrocarbon Macrocycles for Simplified, Single-Layer Organic Light-Emitting Devices

Abstract

A method for the modular synthesis of aromatic hydrocarbon macrocycles has been developed for base materials in single-layer organic light-emitting devices. The method with Ir-catalyzed direct C–H borylation and Suzuki–Miyaura coupling was concise and scalable, which allowed for a gram-scale preparation of aromatic hydrocarbon macrocycles that have bulky substituents at the periphery. The new arylated hydrocarbon macrocycles enabled a quantitative electro-optical conversion in organic light-emitting devices with a phosphorescent emitter, which is, notably, in a single-layer architecture consisting of two regions of doped and undoped materials. The highest external quantum efficiencies reached 24.8%, surpassing those of previous hydrocarbon base materials

    Similar works

    Full text

    thumbnail-image

    Available Versions