Electric Stress-Induced Threshold Voltage Instability of Multilayer MoS<sub>2</sub> Field Effect Transistors
- Publication date
- Publisher
Abstract
We investigated the gate bias stress effects of multilayered MoS<sub>2</sub> field effect transistors (FETs) with a back-gated configuration. The electrical stability of the MoS<sub>2</sub> FETs can be significantly influenced by the electrical stress type, relative sweep rate, and stress time in an ambient environment. Specifically, when a positive gate bias stress was applied to the MoS<sub>2</sub> FET, the current of the device decreased and its threshold shifted in the positive gate bias direction. In contrast, with a negative gate bias stress, the current of the device increased and the threshold shifted in the negative gate bias direction. The gate bias stress effects were enhanced when a gate bias was applied for a longer time or when a slower sweep rate was used. These phenomena can be explained by the charge trapping due to the adsorption or desorption of oxygen and/or water on the MoS<sub>2</sub> surface with a positive or negative gate bias, respectively, under an ambient environment. This study will be helpful in understanding the electrical-stress-induced instability of the MoS<sub>2</sub>-based electronic devices and will also give insight into the design of desirable devices for electronics applications