Multifunctional Cyclic d,l‑α-Peptide Architectures Stimulate Non-Insulin Dependent Glucose Uptake in Skeletal Muscle Cells and Protect Them Against Oxidative Stress

Abstract

Oxidative stress directly correlates with the early onset of vascular complications and the progression of peripheral insulin resistance in diabetes. Accordingly, exogenous antioxidants augment insulin sensitivity in type 2 diabetic patients and ameliorate its clinical signs. Herein, we explored the unique structural and functional properties of the abiotic cyclic d,l-α-peptide architecture as a new scaffold for developing multifunctional agents to catalytically decompose ROS and stimulate glucose uptake. We showed that His-rich cyclic d,l-α-peptide <b>1</b> is very stable under high H<sub>2</sub>O<sub>2</sub> concentrations, effectively self-assembles to peptide nanotubes, and increases the uptake of glucose by increasing the translocation of GLUT1 and GLUT4. It also penetrates cells and protects them against oxidative stress induced under hyperglycemic conditions at a much lower concentration than α-lipoic acid (ALA). In vivo studies are now required to probe the mode of action and efficacy of these abiotic cyclic d,l-α-peptides as a novel class of antihyperglycemic compounds

    Similar works

    Full text

    thumbnail-image

    Available Versions