Abstract

Directed self-assembly processes of polymeric systems represent a powerful approach for the generation of structural hierarchy in analogy to biological systems. Herein, we utilize triiodide as a strongly polarizable counterion to induce hierarchical self-assembly of an ABC miktoarm star terpolymer comprising a polybutadiene (PB), a poly(<i>tert</i>-butyl methacrylate) (P<i>t</i>BMA), and a poly(<i>N</i>-methyl-2-vinylpyridinium) (P2VPq) segment. Hereby, the miktoarm architecture in conjunction with an increasing ratio of triiodide <i>versus</i> iodide counterions allows for a stepwise assembly of spherical micelles as initial building blocks into cylindrical structures and superstructures thereof. Finally, micrometer-sized multicompartment particles with a periodic lamellar fine structure are observed, for which we introduce the term “woodlouse”. The counterion-mediated decrease in hydrophilicity of the corona-forming P2VPq block is the underlying trigger to induce this hierarchical structure formation. All individual steps and the corresponding intermediates toward these well-defined superstructures were intensively studied by scattering and electron microscopic techniques, including transmission electron microtomography

    Similar works

    Full text

    thumbnail-image

    Available Versions