Understanding the Conduction Mechanism of the Protonic Conductor CsH<sub>2</sub>PO<sub>4</sub> by Solid-State NMR Spectroscopy

Abstract

Local dynamics and hydrogen bonding in CsH<sub>2</sub>PO<sub>4</sub> have been investigated by <sup>1</sup>H, <sup>2</sup>H, and <sup>31</sup>P solid-state NMR spectroscopy to help provide a detailed understanding of proton conduction in the paraelectric phase. Two distinct environments are observed by <sup>1</sup>H and <sup>2</sup>H NMR, and their chemical shifts (<sup>1</sup>H) and quadrupolar coupling constants (<sup>2</sup>H) are consistent with one strong and one slightly weaker H-bonding environment. Two different protonic motions are detected by variable-temperature <sup>1</sup>H MAS NMR and <i>T</i><sub>1</sub> spin–lattice relaxation time measurements in the paraelectric phase, which we assign to librational and long-range translational motions. An activation energy of 0.70 ± 0.07 eV is extracted for the latter motion; that of the librational motion is much lower. <sup>31</sup>P NMR line shapes are measured under MAS and static conditions, and spin–lattice relaxation time measurements have been performed as a function of temperature. Although the <sup>31</sup>P line shape is sensitive to the protonic motion, the reorientation of the phosphate ions does not lead to a significant change in the <sup>31</sup>P CSA tensor. Rapid protonic motion and rotation of the phosphate ions is seen in the superprotonic phase, as probed by the <i>T</i><sub>1</sub> measurements along with considerable line narrowing of both the <sup>1</sup>H and the <sup>31</sup>P NMR signals

    Similar works

    Full text

    thumbnail-image

    Available Versions