Predicting the Complex Phase Behavior of Self-Assembling Drug Delivery Nanoparticles

Abstract

Amphiphilic lyotropic liquid crystalline self-assembled nanomaterials have important applications in the delivery of therapeutic and imaging agents. However, little is known about the effect of the incorporated drug on the structure of nanoparticles. Predicting these properties is widely considered intractable. We present computational models for three drug delivery carriers, loaded with 10 drugs at six concentrations and two temperatures. These models predicted phase behavior for 11 new drugs. Subsequent synchrotron small-angle X-ray scattering experiments validated the predictions

    Similar works

    Full text

    thumbnail-image

    Available Versions