Quantitative Purity–Activity Relationships of Natural Products: The Case of Anti-Tuberculosis Active Triterpenes from <i>Oplopanax horridus</i>

Abstract

The present study provides an extension of the previously developed concept of purity–activity relationships (PARs) and enables the quantitative evaluation of the effects of multiple minor components on the bioactivity of residually complex natural products. The anti-tuberculosis active triterpenes from the Alaskan ethnobotanical <i>Oplopanax horridus</i> were selected as a case for the development of the quantitative PAR (QPAR) concept. The residual complexity of the purified triterpenes was initially evaluated by 1D- and 2D-NMR and identified as a combination of structurally related and unrelated impurities. Using a biochemometric approach, the qHNMR purity and anti-TB activity of successive chromatographic fractions of <i>O. horridus</i> triterpenes were correlated by linear regression analysis to generate a mathematical QPAR model. The results demonstrate that impurities, such as widely occurring monoglycerides, can have a profound impact on the observed antimycobacterial activity of triterpene-enriched fractions. The QPAR concept is shown to be capable of providing a quantitative assessment in situations where residually complex constitution contributes toward the biological activity of natural products

    Similar works

    Full text

    thumbnail-image

    Available Versions