Quantitatively Enhanced Reliability and Uniformity of High‑κ Dielectrics on Graphene Enabled by Self-Assembled Seeding Layers

Abstract

The full potential of graphene in integrated circuits can only be realized with a reliable ultrathin high-κ top-gate dielectric. Here, we report the first statistical analysis of the breakdown characteristics of dielectrics on graphene, which allows the simultaneous optimization of gate capacitance and the key parameters that describe large-area uniformity and dielectric strength. In particular, vertically heterogeneous and laterally homogeneous Al<sub>2</sub>O<sub>3</sub> and HfO<sub>2</sub> stacks grown via atomic-layer deposition and seeded by a molecularly thin perylene-3,4,9,10-tetracarboxylic dianhydride organic monolayer exhibit high uniformities (Weibull shape parameter β > 25) and large breakdown strengths (Weibull scale parameter, <i>E</i><sub>BD</sub> > 7 MV/cm) that are comparable to control dielectrics grown on Si substrates

    Similar works

    Full text

    thumbnail-image

    Available Versions