Reactive Template-Induced Self-Assembly to Ordered Mesoporous Polymeric and Carbonaceous Materials

Abstract

As an important method for preparing ordered mesoporous polymeric and carbonaceous materials, the organic template directed self-assembly is facing challenges because of the weak noncovalent interactions between the organic templates and the building blocks. Herein we develop a novel reactive template-induced self-assembly procedure for fabrication of ordered mesoporous polymer and carbon materials. In our approach, the aldehyde end-group of reactive F127 template can react with the resol building block to <i>in-situ</i> form a stable covalent bond during the self-assembly process. This is essential for an enhanced interaction between the resol and the template, thus leading to the formation of an ordered body-centered cubic mesostructure. We also show that the ordered mesoporous carbon product exhibits superior capacitive performance, presenting an attractive potential candidate for high performance supercapacitor electrodes

    Similar works

    Full text

    thumbnail-image

    Available Versions