Theoretical Study of Thermal Rearrangements of 1-Hexen-5-yne, 1,2,5-Hexatriene, and 2-Methylenebicyclo[2.1.0]pentane

Abstract

In this research, a comprehensive theoretical investigation of the thermal rearrangements of 1-hexen-5-yne, 1,2,5-hexatriene, and 2-methylenebicyclo[2.1.0]­pentane is carried out employing density functional theory (DFT) and high level <i>ab initio</i> methods, such as the complete active space self-consistent field (CASSCF), multireference second-order Møller–Plesset perturbation theory (MRMP2), and coupled-cluster singles and doubles with perturbative triples [CCSD­(T)]. The potential energy surface (PES) for the relevant system is explored to provide a theoretical account of pyrolysis experiments by Huntsman, Baldwin, and Roth on the target system. The rate constants and product distributions are calculated using theoretical kinetic modelings. The rate constant for each isomerization reaction is computed using the transition state theory (TST). The simultaneous first-order ordinary-differential equations are solved numerically for the relevant system to obtain time-dependent concentrations, hence the product distributions at a given temperature. Our computed energy values (reaction energies and activation parameters) are in agreement with Roth’s experiments and the product distributions of Huntsman’s experiments at 340 and 385 °C with various reaction times, while simulated product fractions are in qualitative accordance with Baldwin’s experiment

    Similar works

    Full text

    thumbnail-image

    Available Versions