Abstract

Here we report the properties of field-effect transistors based on a few layers of chemical vapor transport grown α-MoTe<sub>2</sub> crystals mechanically exfoliated onto SiO<sub>2</sub>. We performed field-effect and Hall mobility measurements, as well as Raman scattering and transmission electron microscopy. In contrast to both MoS<sub>2</sub> and MoSe<sub>2</sub>, our MoTe<sub>2</sub> field-effect transistors are observed to be hole-doped, displaying on/off ratios surpassing 10<sup>6</sup> and typical subthreshold swings of ∼140 mV per decade. Both field-effect and Hall mobilities indicate maximum values approaching or surpassing 10 cm<sup>2</sup>/(V s), which are comparable to figures previously reported for single or bilayered MoS<sub>2</sub> and/or for MoSe<sub>2</sub> exfoliated onto SiO<sub>2</sub> at room temperature and without the use of dielectric engineering. Raman scattering reveals sharp modes in agreement with previous reports, whose frequencies are found to display little or no dependence on the number of layers. Given that MoS<sub>2</sub> is electron-doped, the stacking of MoTe<sub>2</sub> onto MoS<sub>2</sub> could produce ambipolar field-effect transistors and a gap modulation. Although the overall electronic performance of MoTe<sub>2</sub> is comparable to those of MoS<sub>2</sub> and MoSe<sub>2</sub>, the heavier element Te leads to a stronger spin–orbit coupling and possibly to concomitantly longer decoherence times for exciton valley and spin indexes

    Similar works

    Full text

    thumbnail-image

    Available Versions