research

Simulation of impaction filtration of aerosol droplets in porous media

Abstract

We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar flow and quantify the role of inertial effects on the filtration of an ensemble of particles. We adopt the Euler-Lagrange approach, distinguishing a flow field in which the motion of a large number of discrete particles is simulated. We associate filtration with the deterministic collision of inertial particles with solid elements of the structured porous medium. To underpin the physical `consistency' of deterministic particle filtration, we investigate to what extent the particle tracking algorithm ensures that mass-less test-particles will not be captured by the structured porous filter at all. This element of the algorithm is essential in order to distinguish physical filtration by inertial effects from unwanted numerical filtration, due to the finite spatial resolution of the gas flow. We consider filtration of particles whose motion is governed by Stokes drag and determine the filtration efficiency in a range of Stokes relaxation times. An exponential decay of the number of particles with time is observed

    Similar works