Temperature-induced phase separation in pseudoternary mixtures of Triton X-100–butanol–kerosene–water

Abstract

<p>The transparent Winsor IV domain in the phase diagram of the mixtures of emulsifier (Triton X-100 and butanol), oil (kerosene), and water is found to be 34% of the total phase diagram in presence of emulsifier with surfactant:cosurfactant::1:1, and is water dominant. Increase in cosurfactant/surfactant ratio inverts the Winsor IV domain to become oil rich. The plot of conductance of the microemulsions prepared by substituting water by brine against water content depicts the existence of three distinct phases like oil-in-water, bicontinuous, and water-in-oil microemulsion in the phase diagram. The phase contrast micrographs of the mixtures of different compositions in these three different phases reveal the existence of microdroplets of oil dispersed in water and water dispersed in oil. Further, the dynamic light scattering studies of these solutions reveal an inhomogeneity in the size distribution of the droplets. A temperature-induced clouding in the microemulsion domain leading to phase separation has been observed. Additives like glucose, sucrose, and sodium chloride decrease the cloud point (CP), while addition of ammonium thiocyanate increases it. A quantitative relationship of the clouding temperature with the composition of the microemulsion has been established. With increase in oil and emulsifier, the cloud point of the microemulsion increases. The separated phases after the clouding have been used for preconcentration of water-soluble metal ions as well as oil-soluble dyes. The turbid systems on heating led to separation into three isotropic phases which are found to be stable at ambient temperature. The stability of these phases is ascribed to the formation of stable microemulsions by mass transfer from one phase to other.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions