The rate of reaction of methane with oxygen in the presence of a Li/Sn/MgO catalyst has been studied as a function of the partial pressures of CH4, O2 and CO2 using a well-mixed reaction system which is practically gradientless with respect to gas-phase concentrations. It is concluded that the rate-determining step involves reaction of a molecule of CH4 adsorbed on the catalyst surface with an adsorbed di-atomic oxygen species. The kinetics are consistent with a Langmuir-Hinshelwood type mechanism involving competitive adsorption of CH4, O2 and CO2 on a single site. A comparison is made with previously published results for the Li/MgO material