Department of Applied Mathematics, University of Twente
Doi
Abstract
Associated with a skew-symmetric linear operator on the spatial domain [a,b] we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated to this Dirac structure is infinite dimensional system. We parameterize the boundary port variables for which the C0-semigroup associated to this system is contractive or unitary. Furthermore, this parameterization is used to split the boundary port variables into inputs and outputs. Similarly, we define a linear port controlled Hamiltonian system associated with the previously defined Dirac structure and a symmetric positive operator defining the energy of the system. We illustrate this theory on the example of the Timoshenko Beam. \u