Computing and Institute of Biomedical Engineering, Imperial College London
Doi
Abstract
Optical imaging is an emerging field of clinical diagnostics that can address the growing
medical need for early cancer detection and diagnosis. Various human cancers are
amenable to better prognosis and patient survival if found and treated during early
disease onset. Besides providing wide-field, macroscopic diagnostic information similar
to existing clinical imaging techniques, optical imaging modalities have the added
advantage of microscopic, high resolution cellular-level imaging from in vivo tissues in real
time. This comprehensive imaging approach to cancer detection and the possibility of
performing an ‘optical biopsy’ without tissue removal has led to growing interest in the
field with numerous techniques under investigation. Three optical techniques are
discussed in this thesis, namely multispectral fluorescence imaging (MFI), hyperspectral
reflectance imaging (HRI) and fluorescence confocal endomicroscopy (FCE). MFI and
HRI are novel endoscopic imaging-based extensions of single point detection techniques,
such as laser induced fluorescence spectroscopy and diffuse reflectance spectroscopy.
This results in the acquisition of spectral data in an intuitive imaging format that allows
for quantitative evaluation of tissue disease states. We demonstrate MFI and HRI on
fluorophores, tissue phantoms and ex vivo tissues and present the results as an RGB
colour image for more intuitive assessment. This follows dimensionality reduction of the
acquired spectral data with a fixed-reference isomap diagnostic algorithm to extract only
the most meaningful data parameters. FCE is a probe-based point imaging technique
offering confocal detection in vivo with almost histology-grade images. We perform FCE
imaging on chemotherapy-treated in vitro human ovarian cancer cells, ex vivo human
cancer tissues and photosensitiser-treated in vivo murine tumours to show the enhanced
detection capabilities of the technique. Finally, the three modalities are applied in
combination to demonstrate an optical viewfinder approach as a possible minimally-invasive
imaging method for early cancer detection and diagnosis