research

Optimization strategy for actuator and sensor placement in active structural acoustic control

Abstract

In active structural acoustic control the goal is to reduce the sound radiation of a structure by means of changing the vibrational behaviour of that structure. The performance of such an active control system is to a large extent determined by the locations of the actuators and sensors. In this work an approach is presented for the optimization of the actuator and sensor locations. The approach combines a numerical modelling technique, for predicting the control performance, and genetic optimization, to find the optimal actuator and sensor locations. The approach is tested for a setup consisting of clamped rectangular plate with a piezoelectric actuator and either structural or acoustic sensors. The results show that a control system with optimal actuator and sensor configuration outperforms an arbitrary chosen configuration in terms of reduction in radiated sound power

    Similar works