Abstract

Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (<i>ZT</i>) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) that violates phase equilibrium, namely, phase-pure n-type K<sub>0.06</sub>Bi<sub>2</sub>Te<sub>3.18</sub>. Incorporated potassium and tellurium in Bi<sub>2</sub>Te<sub>3</sub> far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 μW cm<sup>–1</sup> K<sup>–2</sup> and a high <i>ZT</i> > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications

    Similar works