The semiarid region of Northeast Brazil is characterized by water scarcity, vulnerability of natural resources, and pronounced climatic variability. An integrated model has been developed to simulate this complex situation with an emphasis on a large-scale representation of hydrological processes and on the sensitivity to climate change. Regional climate change scenarios were obtained by empirical downscaling with large-scale climate information from different GCMs which differ strongly in their projections for future precipitation. The results show that due to these differences, it is still impossible to give quantitative values of the water availability in a forecast sense, i.e. to assign probabilities to the simulated results. However, it becomes clear that efficient and ecologically sound water management is a key question for further development. The results show that, independent of the climate change, agriculture is more vulnerable to drought impacts in the case of rainfed compared to irrigated farming. However, the capacity of irrigation and water infrastructure to enhance resilience with respect to climatic fluctuations is significantly constrained in the case of a negative precipitation trend