Bis(naphthol)-based fluorescent chemoprobe for cesium cation and its immobilisation on silica nanoparticle as a high selective adsorbent

Abstract

<p>A bis(naphthol)-based cation receptor <b>1</b> has been synthesised by three steps of synthetic procedure. The spectroscopic properties of <b>1</b> upon addition of various metal ions were investigated by UV–vis absorption and fluorescence spectroscopy. As a result, the absorption of <b>1</b> was linearly decreased as a function of concentration of added Cs<sup>+</sup>. Also, <b>1</b> exhibited dramatic fluorescence quenching effect upon exposure to caesium cation. Contrastively, no significant quenching effect was observed upon addition of other metal ions such as Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, Ni<sup>2+</sup> and Zn<sup>2+</sup>. It was found that <b>1</b> formed a 1:1 complex with Cs<sup>+</sup> by Job’s plot. Furthermore, we also prepared <b>1</b>-functionalised silica nanoparticle (<b>SiO</b><sub><b>2</b></sub><b>-1</b>) as an adsorbent for Cs<sup>+</sup>. <b>SiO</b><sub><b>2</b></sub><b>-1</b> showed a great capacity for selective removal of caesium ion from aqueous solution as well as from tap water. Thus, it is potentially useful for the detection and removal of caesium cation from environmental and biological fluids polluted by nuclear radiation and nuclear waste.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions