Supplementary Material for: Adaptive Alternative Splicing Correlates with Less Environmental Risk of Parkinsonism

Abstract

<em>Background/Objective:</em> Environmental exposure to anti-acetylcholinesterases (AChEs) aggravates the risk of Parkinsonism due to currently unclear mechanism(s). We explored the possibility that the brain’s capacity to induce a widespread adaptive alternative splicing response to such exposure may be involved. <i>Methods:</i> Following exposure to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), brain region transcriptome profiles were tested. <i>Results:</i> Changes in transcript profiles, alternative splicing patterns and splicing-related gene categories were identified. Engineered mice over-expressing the protective AChE-R splice variant showed less total changes but more splicing-related ones than hypersensitive AChE-S over-expressors with similarly increased hydrolytic activities. Following MPTP exposure, the substantia nigra and prefrontal cortex (PFC) of both strains showed a nuclear increase in the splicing factor ASF/SF2 protein. Furthermore, intravenous injection with highly purified recombinant human AChE-R changed transcript profiles in the striatum. <i>Conclusions:</i> Our findings are compatible with the working hypothesis that inherited or acquired alternative splicing deficits may promote parkinsonism, and we propose adaptive alternative splicing as a strategy for attenuating its progression

    Similar works

    Full text

    thumbnail-image

    Available Versions