Potentiation effect of vasopressin on melatonin secretion as determined by trans_pineal microdialysis in the Rat

Abstract

The mammalian pineal gland is known to receive a noradrenergic innervation originating from the superior cervical ganglion which corresponds to the primary regulatory input for melatonin synthesis. However, many peptidergic fibers containing peptides such as vasopressin and oxytocin have also been found in the rat pineal gland. The present study was performed to investigate the possible role of vasopressin and oxytocin on melatonin secretion in vivo. Therefore, both neuropeptides were delivered for 2 h through a trans-pineal microdialysis probe directly into the gland at different times during the nocturnal phase of the light:dark cycle. At the same time pineal dialysates were collected continuously. Melatonin concentrations were measured by radioimmunoassay. Melatonin synthesis potentiation was achieved when vasopressin was infused locally in the pineal, during the onset of nocturnal melatonin secretion. In order to assess the possible role of a physiological increase of endogenous circulating vasopressin on pineal metabolism, melatonin synthesis was recorded in the same animals before and after a prolonged dehydration period. Night time melatonin concentration was increased after the water deprivation vs control conditions. Contrary to that, oxytocin seems not to affect pineal metabolism in the rat since no significant change was observed on melatonin secretion in response to a local oxytocin infusion. These results show that vasopressin can modulate melatonin synthesis in the rat pineal whereas no effect was obtained with oxytocin, at least under the present experimental condition

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/12/2017
    Last time updated on 04/09/2017