Eu <sup>3+</sup> Sequestration by Biogenic Nano-Hydroxyapatite Synthesized at Neutral and Alkaline pH

Abstract

<p>Biogenic hydroxyapatite (bio-HA) has the potential for radionuclide capture and remediation of metal-contaminated environments. Biosynthesis of bio-HA was achieved via the phosphatase activity of a <i>Serratia sp</i>. supplemented with various concentrations of CaCl<sub>2</sub> and glycerol 2-phosphate (G2P) provided at pH 7.0 or 8.6. Presence of hydroxyapatite (HA) was confirmed in the samples by X-ray powder diffraction analysis. When provided with limiting (1 mM) G2P and excess (5 mM) Ca<sup>2+</sup> at pH 8.6, monohydrocalcite was found. This, and bio-HA with less (1 mM) Ca<sup>2+</sup> accumulated Eu(III) to ∼31% and 20% of the biomineral mass, respectively, as compared to 50% of the mineral mass accumulated by commercial HA. Optimally, with bio-HA made at initial pH 7.0 from 2 mM Ca<sup>2+</sup> and 5 mM G2P, Eu(III) accumulated to ∼74% of the weight of bio-HA, which was equal to the mass of the HA mineral component of the biomaterial. The implications with respect to potential bio-HA-barrier development in situ or as a remediation strategy are discussed.</p

    Similar works