Enhanced inter-diffusion of immiscible elements Fe/Cu at the interface of FeZr/CuZr amorphous multilayers

Abstract

<p>Fe<sub>75</sub>Zr<sub>25</sub>/Cu<sub>64</sub>Zr<sub>36</sub> amorphous multilayers were prepared by magnetron sputtering. Atom probe tomography was employed to analyze the atomic inter-diffusion at the interface of the multilayers before and after annealing (573 K, 60 min). An unexpected enhanced inter-diffusion of the immiscible elements Fe and Cu was detected at the interface of the multilayers. As the inter-diffusion in amorphous multilayers is much faster than that in the crystalline counterparts, this process may open a way to manipulate or create amorphous multilayers with new properties. This idea agrees with the observation of the variation of magnetic properties of Fe<sub>75</sub>Zr<sub>25</sub>/Cu<sub>64</sub>Zr<sub>36</sub> amorphous multilayers.</p> <p><b>IMPACT STATEMENT</b> This paper reveals the enhanced atomic inter-diffusion at the interface of amorphous materials, and may open a way to manipulate or create amorphous multilayers with new properties.</p

    Similar works