Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil

Abstract

<div><p>Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM), and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH), which are expected to be worse sorbents for alkaline elements (e.g., Cs) than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs.</p></div

    Similar works