Background: Automatic Static Analysis (ASA) tools analyze source code and look for code patterns (aka smells) that might cause defective behavior or might degrade other dimensions of software quality, e.g. efficiency. There are many potentially negative code patterns, and ASA tools typically report a huge list of them even in small programs. Moreover, so far, little evidence is available about the negative impact on performance of code patterns identified by such tools. A consequence is that programmers cannot appreciate the benefits of ASA tools and tend not to include them in their workflow. Aims: Quantitatively assess the impact of issues signaled by ASA tools on time efficiency. Method: We select 20 issues and for each of them we set up two source code fragments: one containing the issue and the corresponding refactored version, functionally identical but without the issue. We set up three different platforms, isolated from network and other user programs, then we execute the code fragments, and measure the execution time of both code versions. Results: We find that eleven issues have an actual negative impact on performance. We also compute for each issue an estimation for the delay provoked by a single execution. Conclusions: We produce a set of issues with a verified negative impact on performance. They can be checked easily with an analysis tool and code can be refactored to obtain a provably more efficient code. We also provide the estimated delay cost of each issue in the environments where we conduct the tests. These results can be improved with the help of other researchers: repeating the tests in several platforms would make it possible to build up a wider benchmar