Kaurenoic acid extracted from <i>Sphagneticola trilobata</i> reduces acetaminophen-induced hepatotoxicity through inhibition of oxidative stress and pro-inflammatory cytokine production in mice

Abstract

<p>Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug that is safe at therapeutic doses. However, acetaminophen overdose can be fatal. Currently, the only treatment available is the N-acetyl cysteine. The diterpene kaurenoic acid (<i>ent</i>-kaur-16-en-19-oic acid, KA) is the major constituent of <i>Sphagneticola trilobata</i> (L.) Pruski. KA presents anti-inflammatory, anti-nociceptive and antioxidant properties. In this study, we evaluated the efficacy of KA in a model of acetaminophen-induced hepatotoxicity. KA increased, in a dose-dependent manner, the survival rate after acetaminophen overdose. KA reduced acetaminophen-induced hepatic necrosis and ALT and AST levels. KA decreased acetaminophen-induced neutrophil and macrophage recruitment, oxidative stress and the production of IL-33, TNF-α and IL-1β, alongside with normalisation of IL-10 levels in the liver. Therefore, KA showed preclinical efficacy in acetaminophen-induced hepatotoxicity and lethality.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions