Additional file 1: Table S1. of mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway

Abstract

Proteins involved in nuclear export in the three apicomplexan genomes analyzed. Identification number for proteins involved in nuclear import and export for the apicomplexan genomes, Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium spp. are shown. Gene names for the human homologs are shown, and their corresponding annotation numbers are shown as references. When applicable, the name of the yeast homolog is indicated. Complexes with conserved components are highlighted in color. Statistics (E-value and % identity) are provided for each protein when compared to the human homolog. Conserved proteins are highlighted in bold. (*) indicates that these proteins were previously identified in the respective genomes in another study [77]. The Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium spp. genomes were searched with the following keywords: “nuclear transport receptor”, “nuclear RNA export proteins”, “RNA export”, “importin alpha/beta”, “RNA-binding protein”, “regulator of nonsense transcripts”, “transportin”, “RAs-related nuclear protein/GTP-binding nuclear protein RAN”, “regulator of chromosome condensation”, “major exportin”, “exportins” and “THO complex”. Collected hits were translated into protein sequences, and domains were analyzed using Pfam [91]. To identify human homologs, the collected T. gondii, P. falciparum and Cryptosporidium spp. hits were searched against the Homo sapiens database using the Blastp tool from BLAST, and sequences with the lowest E-value were selected. T. gondii, P. falciparum and Cryptosporidium spp. homologs found were double-checked by searching the T. gondii, P. falciparum and Cryptosporidium spp. genome databases using the human homologs identified in the previous step as queries. Domains identified by Pfam were double-checked using Conserved Domain from BLAST. Using the above strategy, we were able to identify proteins at the protein family level, but the approach was not very accurate for identifying specific homologs. Thus, to identify specific homologs across relevant taxa, we systematically searched mammal, arthropod and apicomplexan databases using the Blastp tool from BLAST. (XLS 52 kb

    Similar works

    Full text

    thumbnail-image

    Available Versions