Failure mechanism researches of material surface and interface in micro-scratch test

Abstract

In the present research, the adhesion properties and failure mechanisms for a ductile thin film on a silicon substrate (Ni/Si) are studied experimentally, and are simulated theoretically. In the experimental research, the relations of the horizontal driving force, vertical displacement and the frictional coefficients with horizontal displacement are measured. Furthermore, the variation of the total energy release rate and the frictional coefficient between contact surfaces are measured through obtaining a frictional effect law. The law displays that the frictional influences on the energy release rate of the total system weakly depend on the thin film thickness. This conclusion leads to that the frictional effect can be eliminated in the toughness ratio relation approximately. So that one can directly obtain the interfacial adhesion toughness from measurements in the micro-scratching test. In addition, the micro-scratching process for the ductile thin film/brittle substrate systems is simulated using the double cohesive zone model. Prediction results of the energy release rate are obtained, and are compared with the experimental results obtained in the present research

    Similar works