CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Analysis of reactive power strategies in HVDC-connected wind power plant clusters
Authors
Oriol Gomis Bellmunt
Sergi Ratés Palau
Kevin Schönleber
Publication date
1 January 2017
Publisher
'Wiley'
Doi
Abstract
© 2017 John Wiley & Sons, Ltd. Offshore wind power plants (WPPs) built near each other but far from shore usually connect to the main grid by a common high-voltage DC (HVDC) transmission system. In the resulting decoupled offshore grid, the wind turbine converters and the high-voltage DC voltage-source converter share the ability to inject or absorb reactive power. The overall reactive power control dispatch influences the power flows in the grid and hence the associated power losses. This paper evaluates the respective power losses in HVDC-connected WPP clusters when applying 5 different reactive power control strategies. The case study is made for a 1.2-GW-rated cluster comprising 3 WPP and is implemented in a combined load flow and converter loss model. A large set of feasible operating points for the system is analyzed for each strategy. The results show that a selection of simulations with equal wind speeds is sufficient for the annual energy production comparison. It is found that the continuous operation of the WPPs with unity power factor has a superior performance with low communication requirements compared with the other conventional strategies. The optimization-based strategy, which is developed in this article, allows a further reduction of losses mainly because of the higher offshore grid voltage level imposed by the high-voltage DC voltage-source converter. Reactive power control in HVDC-connected WPP clusters change significantly the overall power losses of the system, which depend rather on the total sum of the injected active power than on the variance of wind speeds inside the cluster.Postprint (author's final draft
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UPCommons. Portal del coneixement obert de la UPC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/112...
Last time updated on 10/02/2018
UPCommons (Universitat Politècnica de Catalunya)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/112...
Last time updated on 28/02/2025
UPCommons
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/112...
Last time updated on 17/04/2020
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1002%2Fwe.2134
Last time updated on 11/12/2019