Investigation of Cell Derived Nanoparticles for Drug Delivery and Osteogenic Differentiation of Human Stem/Stromal Cells

Abstract

The successful repair of bone defects and injuries is enhanced by the delivery of osteoinductive factors, such as drugs, growth factors, and genetic material that can promote the osteogenic differentiation of stem/stromal cells into osteoblasts. Nanoparticle delivery systems are being studied to enable the sustained release of these factors but suffer from limitations such as cytotoxicity issues, poor loading capacity, and poor cellular uptake. In this project, we developed cell-derived nanoparticles (CDNs), a biomimetic nanoparticle delivery system with high drug loading efficiency, to deliver a glucocorticoid drug, dexamethasone (Dex), to promote the osteogenic differentiation of stem/stromal cells. The synthesized Dex-loaded CDNs had a consistent size range of 30-920 nm, spherical shape, high drug loading efficiency, good cytocompatibility, and were internalized by human adipose-derived stem/stromal cells (hADSCs). Drug-loaded CDNs were able to induce the osteogenic differentiation of hADSCs in vitro, indicating their potential as an efficient drug delivery vehicle for bone regeneration and other applications

    Similar works

    Full text

    thumbnail-image

    Available Versions