Specialising Parsers for Queries

Abstract

Many software systems consist of data processing components that analyse large datasets to gather information and learn from these. Often, only part of the data is relevant for analysis. Data processing systems contain an initial preprocessing step that filters out the unwanted information. While efficient data analysis techniques and methodologies are accessible to non-expert programmers, data preprocessing seems to be forgotten, or worse, ignored. This despite real performance gains being possible by efficiently preprocessing data. Implementations of the data preprocessing step traditionally have to trade modularity for performance: to achieve the former, one separates the parsing of raw data and filtering it, and leads to slow programs because of the creation of intermediate objects during execution. The efficient version is a low-level implementation that interleaves parsing and querying. In this dissertation we demonstrate a principled and practical technique to convert the modular, maintainable program into its interleaved efficient counterpart. Key to achieving this objective is the removal, or deforestation, of intermediate objects in a program execution. We first show that by encoding data types using Böhm-Berarducci encodings (often referred to as Church encodings), and combining these with partial evaluation for function composition we achieve deforestation. This allows us to implement optimisations themselves as libraries, with minimal dependence on an underlying optimising compiler. Next we illustrate the applicability of this approach to parsing and preprocessing queries. The approach is general enough to cover top-down and bottom-up parsing techniques, and deforestation of pipelines of operations on lists and streams. We finally present a set of transformation rules that for a parser on a nested data format and a query on the structure, produces a parser specialised for the query. As a result we preserve the modularity of writing parsers and queries separately while also minimising resource usage. These transformation rules combine deforested implementations of both libraries to yield an efficient, interleaved result

    Similar works