Transduction of chemical signals in dictyostelium cells

Abstract

Three different functions of cyclic AMP in D discoideum are known: (1) cAMP acts as a chemoattractant during cell aggregation, (2) it controls cell development, particularly the acquisition of aggregation competence, and (3) it is involved in terminal cell differentiation. In this report we will concentrate on the functions 1 and 2 of cAMP. Chemotaxis requires the recognition of concentration gradients in the environment by attractant binding to cell surface receptors, the processing of signals from the receptors to the contractile system of the cells, extension of pseudopods at one part, and contraction at other parts of the cells in accord with the external gradient. One pathway of signal processing from the receptors to the contractile system involves the regulation of a myosin kinase. The control of development up to aggregation competence is largely dependent on the temporal pattern of cAMP application: Only repetitive pulses enhance development. This effect has been studied using the expression of a membrane glycoprotein called contact site A as a differentiation marker

    Similar works