It is estimated that there are 170 million diabetics worldwide, and the number continues to rise alarmingly. The management of diabetes is therefore critical to future society, and this is driving demand for point-of-care (POC) glucose biosensors, and they play a central role in the management blood sugar levels in patients with diabetes. Glucose Oxidase (GOx) is a biorecognition enzyme, which recognises the glucose molecule and acts as a catalyst to produce gluconic acid and hydrogen peroxide in the presence of glucose and oxygen.[1] Ionic Liquids are organic salts, which are liquid at ambient temperature. Their non-volatile character and thermal stability makes them an attractive alternative to conventional organic solvents. We are interested in studying the characteristics of GOx in ionic liquids, and in polymer materials incorporating ionic liquids known as ionogels. Herein we report the enzyme activity of GOx in a biosensor fabricated using a novel
hybrid ionogel. This approach potentially offers several advantages over conventional materials. For example, the ionogels can be chemically and physically tailored for a particular requirement. [3] The design of these ionogels ensures that the enzyme is effectively retained in the polymer, thus preventing leaching. The ionogel-biosensor has been incorporated into a compact, portable and low cost device, which allows the real time monitoring of enzyme activity of GOx. Based on this model, we project that this device will provide the platform for measuring the enzyme activity of a wide range of enzymes