Modelling the maximum development of urban heat island with the application of gis based surface parameters in Szeged : Part 2 : stratified sampling and the statistical model

Abstract

Our investigations concentrated on the urban heat island (UHI) in its strongest development during the diumal cycle in Szeged, Hungary. In order to quantify the effect of the peculiar urban structure on the development of the mean annual urban heat island we determined a new surface parameter (weighted volumetric compactness) which characterises the volume, the building plan area and the thermodynamic role of the buildings at the same time. The calculation of this new parameter required a large-sized digital database that includes more than 22,000 building's 3 dimensional measurement. Because this would take a long time, we concentrate the investigation on a smaller but representative sample area, as the first step of our research. Our task included the development of statistical models using urban surface parameters (built-up and water surface ratios, sky view factor, building height, weighted volumetric compactness). Model equations were determined by means of stepwise multiple linear regression analysis. As the results show, there is a clear connection between the spatial distribution of the UHI and the examined parameters (built-up and water surface ratios and weighted volumetric compactness), so these parameters play an important role in the evolution of the UHI intensity field. The distribution of the difference between the modelled and the (independent) annual mean maximum heat island intensity show that we could calculate the heat island's spatial distribution properly from the sample area's dataset

    Similar works