On Efficiently Detecting Overlapping Communities over Distributed Dynamic Graphs


Modern networks are of huge sizes as well as high dynamics, which challenges the efficiency of community detection algorithms. In this paper, we study the problem of overlapping community detection on distributed and dynamic graphs. Given a distributed, undirected and unweighted graph, the goal is to detect overlapping communities incrementally as the graph is dynamically changing. We propose an efficient algorithm, called \textit{randomized Speaker-Listener Label Propagation Algorithm} (rSLPA), based on the \textit{Speaker-Listener Label Propagation Algorithm} (SLPA) by relaxing the probability distribution of label propagation. Besides detecting high-quality communities, rSLPA can incrementally update the detected communities after a batch of edge insertion and deletion operations. To the best of our knowledge, rSLPA is the first algorithm that can incrementally capture the same communities as those obtained by applying the detection algorithm from the scratch on the updated graph. Extensive experiments are conducted on both synthetic and real-world datasets, and the results show that our algorithm can achieve high accuracy and efficiency at the same time.Comment: A short version of this paper will be published as ICDE'2018 poste

    Similar works

    Full text


    Available Versions

    Last time updated on 10/08/2021