Recently, it has been shown how McEliece public-key cryptosystems based on
moderate-density parity-check (MDPC) codes allow for very compact keys compared
to variants based on other code families. In this paper, classical (iterative)
decoding schemes for MPDC codes are considered. The algorithms are analyzed
with respect to their error-correction capability as well as their resilience
against a recently proposed reaction-based key-recovery attack on a variant of
the MDPC-McEliece cryptosystem by Guo, Johansson and Stankovski (GJS). New
message-passing decoding algorithms are presented and analyzed. Two proposed
decoding algorithms have an improved error-correction performance compared to
existing hard-decision decoding schemes and are resilient against the GJS
reaction-based attack for an appropriate choice of the algorithm's parameters.
Finally, a modified belief propagation decoding algorithm that is resilient
against the GJS reaction-based attack is presented