Numerous observations have revealed that power-law distributions are
ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme
ultraviolet radiation, and radio waves all display power-law frequency
distributions. Since magnetic reconnection is the driving mechanism for many
energetic solar phenomena, it is likely that reconnection events themselves
display such power-law distributions. In this work, we perform numerical
simulations of the solar corona driven by simple convective motions at the
photospheric level. Using temperature changes, current distributions, and
Poynting fluxes as proxies for heating, we demonstrate that energetic events
occurring in our simulation display power-law frequency distributions, with
slopes in good agreement with observations. We suggest that the
braiding-associated reconnection in the corona can be understood in terms of a
self-organized criticality model driven by convective rotational motions
similar to those observed at the photosphere.Comment: Accepted by Ap