Combining high-resolution spectropolarimetric and imaging data is key to
understanding the decay process of sunspots as it allows us scrutinizing the
velocity and magnetic fields of sunspots and their surroundings. Active region
NOAA 12597 was observed on 24/09/2016 with the 1.5-m GREGOR solar telescope
using high-spatial resolution imaging as well as imaging spectroscopy and
near-infrared (NIR) spectropolarimetry. Horizontal proper motions were
estimated with LCT, whereas LOS velocities were computed with spectral line
fitting methods. The magnetic field properties were inferred with the SIR code
for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the
leading sunspot had two light-bridges indicating the onset of its decay. One of
the light-bridges disappeared, and an elongated, dark umbral core at its edge
appeared in a decaying penumbral sector facing the newly emerging flux. The
flow and magnetic field properties of this penumbral sector exhibited weak
Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap
adjacent to the elongated umbral core and the penumbra in that penumbral sector
displayed LOS velocities similar to granulation. The separating polarities of a
new flux system interacted with the leading and central part of the already
established active region. As a consequence, the leading spot rotated 55-degree
in clockwise direction over 12 hours. In the high-resolution observations of a
decaying sunspot, the penumbral filaments facing flux emergence site contained
a darkened area resembling an umbral core filled with umbral dots. This umbral
core had velocity and magnetic field properties similar to the sunspot umbra.
This implies that the horizontal magnetic fields in the decaying penumbra
became vertical as observed in flare-induced rapid penumbral decay, but on a
very different time-scale.Comment: 14 pages, 11 figures, Accepted to be published in Astronomy and
Astrophysic